Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1465.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
bnj1465.2 | |- ( ps -> A. x ps ) |
||
bnj1465.3 | |- ( ch -> ps ) |
||
Assertion | bnj1465 | |- ( ( ch /\ A e. V ) -> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1465.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | bnj1465.2 | |- ( ps -> A. x ps ) |
|
3 | bnj1465.3 | |- ( ch -> ps ) |
|
4 | 3 | adantr | |- ( ( ch /\ A e. V ) -> ps ) |
5 | 2 1 | bnj1464 | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |
6 | 5 | adantl | |- ( ( ch /\ A e. V ) -> ( [. A / x ]. ph <-> ps ) ) |
7 | 4 6 | mpbird | |- ( ( ch /\ A e. V ) -> [. A / x ]. ph ) |
8 | 7 | spesbcd | |- ( ( ch /\ A e. V ) -> E. x ph ) |