Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1466.1 | |- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
|
bnj1466.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
||
bnj1466.3 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
||
bnj1466.4 | |- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
||
bnj1466.5 | |- D = { x e. A | -. E. f ta } |
||
bnj1466.6 | |- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
||
bnj1466.7 | |- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
||
bnj1466.8 | |- ( ta' <-> [. y / x ]. ta ) |
||
bnj1466.9 | |- H = { f | E. y e. _pred ( x , A , R ) ta' } |
||
bnj1466.10 | |- P = U. H |
||
bnj1466.11 | |- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
||
bnj1466.12 | |- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
||
Assertion | bnj1466 | |- ( w e. Q -> A. f w e. Q ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1466.1 | |- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
|
2 | bnj1466.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
|
3 | bnj1466.3 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
|
4 | bnj1466.4 | |- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
|
5 | bnj1466.5 | |- D = { x e. A | -. E. f ta } |
|
6 | bnj1466.6 | |- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
|
7 | bnj1466.7 | |- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
|
8 | bnj1466.8 | |- ( ta' <-> [. y / x ]. ta ) |
|
9 | bnj1466.9 | |- H = { f | E. y e. _pred ( x , A , R ) ta' } |
|
10 | bnj1466.10 | |- P = U. H |
|
11 | bnj1466.11 | |- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
|
12 | bnj1466.12 | |- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
|
13 | 9 | bnj1317 | |- ( w e. H -> A. f w e. H ) |
14 | 13 | nfcii | |- F/_ f H |
15 | 14 | nfuni | |- F/_ f U. H |
16 | 10 15 | nfcxfr | |- F/_ f P |
17 | nfcv | |- F/_ f x |
|
18 | nfcv | |- F/_ f G |
|
19 | nfcv | |- F/_ f _pred ( x , A , R ) |
|
20 | 16 19 | nfres | |- F/_ f ( P |` _pred ( x , A , R ) ) |
21 | 17 20 | nfop | |- F/_ f <. x , ( P |` _pred ( x , A , R ) ) >. |
22 | 11 21 | nfcxfr | |- F/_ f Z |
23 | 18 22 | nffv | |- F/_ f ( G ` Z ) |
24 | 17 23 | nfop | |- F/_ f <. x , ( G ` Z ) >. |
25 | 24 | nfsn | |- F/_ f { <. x , ( G ` Z ) >. } |
26 | 16 25 | nfun | |- F/_ f ( P u. { <. x , ( G ` Z ) >. } ) |
27 | 12 26 | nfcxfr | |- F/_ f Q |
28 | 27 | nfcrii | |- ( w e. Q -> A. f w e. Q ) |