Metamath Proof Explorer


Theorem bnj1466

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1466.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1466.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1466.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1466.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1466.5
|- D = { x e. A | -. E. f ta }
bnj1466.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1466.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1466.8
|- ( ta' <-> [. y / x ]. ta )
bnj1466.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1466.10
|- P = U. H
bnj1466.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1466.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
Assertion bnj1466
|- ( w e. Q -> A. f w e. Q )

Proof

Step Hyp Ref Expression
1 bnj1466.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1466.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1466.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1466.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1466.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1466.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1466.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1466.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1466.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1466.10
 |-  P = U. H
11 bnj1466.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1466.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 9 bnj1317
 |-  ( w e. H -> A. f w e. H )
14 13 nfcii
 |-  F/_ f H
15 14 nfuni
 |-  F/_ f U. H
16 10 15 nfcxfr
 |-  F/_ f P
17 nfcv
 |-  F/_ f x
18 nfcv
 |-  F/_ f G
19 nfcv
 |-  F/_ f _pred ( x , A , R )
20 16 19 nfres
 |-  F/_ f ( P |` _pred ( x , A , R ) )
21 17 20 nfop
 |-  F/_ f <. x , ( P |` _pred ( x , A , R ) ) >.
22 11 21 nfcxfr
 |-  F/_ f Z
23 18 22 nffv
 |-  F/_ f ( G ` Z )
24 17 23 nfop
 |-  F/_ f <. x , ( G ` Z ) >.
25 24 nfsn
 |-  F/_ f { <. x , ( G ` Z ) >. }
26 16 25 nfun
 |-  F/_ f ( P u. { <. x , ( G ` Z ) >. } )
27 12 26 nfcxfr
 |-  F/_ f Q
28 27 nfcrii
 |-  ( w e. Q -> A. f w e. Q )