Metamath Proof Explorer


Theorem bnj1467

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1467.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1467.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1467.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1467.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1467.5
|- D = { x e. A | -. E. f ta }
bnj1467.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1467.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1467.8
|- ( ta' <-> [. y / x ]. ta )
bnj1467.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1467.10
|- P = U. H
bnj1467.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1467.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
Assertion bnj1467
|- ( w e. Q -> A. d w e. Q )

Proof

Step Hyp Ref Expression
1 bnj1467.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1467.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1467.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1467.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1467.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1467.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1467.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1467.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1467.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1467.10
 |-  P = U. H
11 bnj1467.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1467.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 nfcv
 |-  F/_ d _pred ( x , A , R )
14 nfcv
 |-  F/_ d y
15 nfre1
 |-  F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
16 15 nfab
 |-  F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
17 3 16 nfcxfr
 |-  F/_ d C
18 17 nfcri
 |-  F/ d f e. C
19 nfv
 |-  F/ d dom f = ( { x } u. _trCl ( x , A , R ) )
20 18 19 nfan
 |-  F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) )
21 4 20 nfxfr
 |-  F/ d ta
22 14 21 nfsbcw
 |-  F/ d [. y / x ]. ta
23 8 22 nfxfr
 |-  F/ d ta'
24 13 23 nfrex
 |-  F/ d E. y e. _pred ( x , A , R ) ta'
25 24 nfab
 |-  F/_ d { f | E. y e. _pred ( x , A , R ) ta' }
26 9 25 nfcxfr
 |-  F/_ d H
27 26 nfuni
 |-  F/_ d U. H
28 10 27 nfcxfr
 |-  F/_ d P
29 nfcv
 |-  F/_ d x
30 nfcv
 |-  F/_ d G
31 28 13 nfres
 |-  F/_ d ( P |` _pred ( x , A , R ) )
32 29 31 nfop
 |-  F/_ d <. x , ( P |` _pred ( x , A , R ) ) >.
33 11 32 nfcxfr
 |-  F/_ d Z
34 30 33 nffv
 |-  F/_ d ( G ` Z )
35 29 34 nfop
 |-  F/_ d <. x , ( G ` Z ) >.
36 35 nfsn
 |-  F/_ d { <. x , ( G ` Z ) >. }
37 28 36 nfun
 |-  F/_ d ( P u. { <. x , ( G ` Z ) >. } )
38 12 37 nfcxfr
 |-  F/_ d Q
39 38 nfcrii
 |-  ( w e. Q -> A. d w e. Q )