Metamath Proof Explorer


Theorem bnj1468

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1468.1
|- ( ps -> A. x ps )
bnj1468.2
|- ( x = A -> ( ph <-> ps ) )
bnj1468.3
|- ( y e. A -> A. x y e. A )
Assertion bnj1468
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 bnj1468.1
 |-  ( ps -> A. x ps )
2 bnj1468.2
 |-  ( x = A -> ( ph <-> ps ) )
3 bnj1468.3
 |-  ( y e. A -> A. x y e. A )
4 sbccow
 |-  ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph )
5 ax-5
 |-  ( ps -> A. y ps )
6 3 nfcii
 |-  F/_ x A
7 6 nfeq2
 |-  F/ x y = A
8 nfsbc1v
 |-  F/ x [. y / x ]. ph
9 1 nf5i
 |-  F/ x ps
10 8 9 nfbi
 |-  F/ x ( [. y / x ]. ph <-> ps )
11 7 10 nfim
 |-  F/ x ( y = A -> ( [. y / x ]. ph <-> ps ) )
12 11 nf5ri
 |-  ( ( y = A -> ( [. y / x ]. ph <-> ps ) ) -> A. x ( y = A -> ( [. y / x ]. ph <-> ps ) ) )
13 ax6ev
 |-  E. x x = y
14 eqeq1
 |-  ( x = y -> ( x = A <-> y = A ) )
15 14 2 syl6bir
 |-  ( x = y -> ( y = A -> ( ph <-> ps ) ) )
16 sbceq1a
 |-  ( x = y -> ( ph <-> [. y / x ]. ph ) )
17 16 bibi1d
 |-  ( x = y -> ( ( ph <-> ps ) <-> ( [. y / x ]. ph <-> ps ) ) )
18 15 17 sylibd
 |-  ( x = y -> ( y = A -> ( [. y / x ]. ph <-> ps ) ) )
19 13 18 bnj101
 |-  E. x ( y = A -> ( [. y / x ]. ph <-> ps ) )
20 12 19 bnj1131
 |-  ( y = A -> ( [. y / x ]. ph <-> ps ) )
21 5 20 bnj1464
 |-  ( A e. V -> ( [. A / y ]. [. y / x ]. ph <-> ps ) )
22 4 21 bitr3id
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )