Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1468.1 |
|- ( ps -> A. x ps ) |
2 |
|
bnj1468.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
bnj1468.3 |
|- ( y e. A -> A. x y e. A ) |
4 |
|
sbccow |
|- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |
5 |
|
ax-5 |
|- ( ps -> A. y ps ) |
6 |
3
|
nfcii |
|- F/_ x A |
7 |
6
|
nfeq2 |
|- F/ x y = A |
8 |
|
nfsbc1v |
|- F/ x [. y / x ]. ph |
9 |
1
|
nf5i |
|- F/ x ps |
10 |
8 9
|
nfbi |
|- F/ x ( [. y / x ]. ph <-> ps ) |
11 |
7 10
|
nfim |
|- F/ x ( y = A -> ( [. y / x ]. ph <-> ps ) ) |
12 |
11
|
nf5ri |
|- ( ( y = A -> ( [. y / x ]. ph <-> ps ) ) -> A. x ( y = A -> ( [. y / x ]. ph <-> ps ) ) ) |
13 |
|
ax6ev |
|- E. x x = y |
14 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
15 |
14 2
|
syl6bir |
|- ( x = y -> ( y = A -> ( ph <-> ps ) ) ) |
16 |
|
sbceq1a |
|- ( x = y -> ( ph <-> [. y / x ]. ph ) ) |
17 |
16
|
bibi1d |
|- ( x = y -> ( ( ph <-> ps ) <-> ( [. y / x ]. ph <-> ps ) ) ) |
18 |
15 17
|
sylibd |
|- ( x = y -> ( y = A -> ( [. y / x ]. ph <-> ps ) ) ) |
19 |
13 18
|
bnj101 |
|- E. x ( y = A -> ( [. y / x ]. ph <-> ps ) ) |
20 |
12 19
|
bnj1131 |
|- ( y = A -> ( [. y / x ]. ph <-> ps ) ) |
21 |
5 20
|
bnj1464 |
|- ( A e. V -> ( [. A / y ]. [. y / x ]. ph <-> ps ) ) |
22 |
4 21
|
bitr3id |
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |