Step |
Hyp |
Ref |
Expression |
1 |
|
bnj150.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj150.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj150.3 |
|- ( ze <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
4 |
|
bnj150.4 |
|- ( ph' <-> [. 1o / n ]. ph ) |
5 |
|
bnj150.5 |
|- ( ps' <-> [. 1o / n ]. ps ) |
6 |
|
bnj150.6 |
|- ( th0 <-> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn 1o /\ ph' /\ ps' ) ) ) |
7 |
|
bnj150.7 |
|- ( ze' <-> [. 1o / n ]. ze ) |
8 |
|
bnj150.8 |
|- F = { <. (/) , _pred ( x , A , R ) >. } |
9 |
|
bnj150.9 |
|- ( ph" <-> [. F / f ]. ph' ) |
10 |
|
bnj150.10 |
|- ( ps" <-> [. F / f ]. ps' ) |
11 |
|
bnj150.11 |
|- ( ze" <-> [. F / f ]. ze' ) |
12 |
8
|
bnj95 |
|- F e. _V |
13 |
|
sbceq1a |
|- ( f = F -> ( ze' <-> [. F / f ]. ze' ) ) |
14 |
13 11
|
bitr4di |
|- ( f = F -> ( ze' <-> ze" ) ) |
15 |
|
0ex |
|- (/) e. _V |
16 |
|
bnj93 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V ) |
17 |
|
funsng |
|- ( ( (/) e. _V /\ _pred ( x , A , R ) e. _V ) -> Fun { <. (/) , _pred ( x , A , R ) >. } ) |
18 |
15 16 17
|
sylancr |
|- ( ( R _FrSe A /\ x e. A ) -> Fun { <. (/) , _pred ( x , A , R ) >. } ) |
19 |
8
|
funeqi |
|- ( Fun F <-> Fun { <. (/) , _pred ( x , A , R ) >. } ) |
20 |
18 19
|
sylibr |
|- ( ( R _FrSe A /\ x e. A ) -> Fun F ) |
21 |
8
|
bnj96 |
|- ( ( R _FrSe A /\ x e. A ) -> dom F = 1o ) |
22 |
20 21
|
bnj1422 |
|- ( ( R _FrSe A /\ x e. A ) -> F Fn 1o ) |
23 |
8
|
bnj97 |
|- ( ( R _FrSe A /\ x e. A ) -> ( F ` (/) ) = _pred ( x , A , R ) ) |
24 |
1 4 9 8
|
bnj125 |
|- ( ph" <-> ( F ` (/) ) = _pred ( x , A , R ) ) |
25 |
23 24
|
sylibr |
|- ( ( R _FrSe A /\ x e. A ) -> ph" ) |
26 |
22 25
|
jca |
|- ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" ) ) |
27 |
|
bnj98 |
|- A. i e. _om ( suc i e. 1o -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) |
28 |
2 5 10 8
|
bnj126 |
|- ( ps" <-> A. i e. _om ( suc i e. 1o -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) |
29 |
27 28
|
mpbir |
|- ps" |
30 |
|
df-3an |
|- ( ( F Fn 1o /\ ph" /\ ps" ) <-> ( ( F Fn 1o /\ ph" ) /\ ps" ) ) |
31 |
26 29 30
|
sylanblrc |
|- ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" /\ ps" ) ) |
32 |
3 7 4 5
|
bnj121 |
|- ( ze' <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) ) |
33 |
8 9 10 11 32
|
bnj124 |
|- ( ze" <-> ( ( R _FrSe A /\ x e. A ) -> ( F Fn 1o /\ ph" /\ ps" ) ) ) |
34 |
31 33
|
mpbir |
|- ze" |
35 |
12 14 34
|
ceqsexv2d |
|- E. f ze' |
36 |
|
19.37v |
|- ( E. f ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) <-> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn 1o /\ ph' /\ ps' ) ) ) |
37 |
6 36
|
bitr4i |
|- ( th0 <-> E. f ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ph' /\ ps' ) ) ) |
38 |
37 32
|
bnj133 |
|- ( th0 <-> E. f ze' ) |
39 |
35 38
|
mpbir |
|- th0 |