| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1501.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1501.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1501.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1501.4 | 
							 |-  F = U. C  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1501.5 | 
							 |-  ( ph <-> ( R _FrSe A /\ x e. A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1501.6 | 
							 |-  ( ps <-> ( ph /\ f e. C /\ x e. dom f ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1501.7 | 
							 |-  ( ch <-> ( ps /\ d e. B /\ dom f = d ) )  | 
						
						
							| 8 | 
							
								5
							 | 
							simprbi | 
							 |-  ( ph -> x e. A )  | 
						
						
							| 9 | 
							
								1 2 3 4
							 | 
							bnj60 | 
							 |-  ( R _FrSe A -> F Fn A )  | 
						
						
							| 10 | 
							
								9
							 | 
							fndmd | 
							 |-  ( R _FrSe A -> dom F = A )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							bnj832 | 
							 |-  ( ph -> dom F = A )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eleqtrrd | 
							 |-  ( ph -> x e. dom F )  | 
						
						
							| 13 | 
							
								4
							 | 
							dmeqi | 
							 |-  dom F = dom U. C  | 
						
						
							| 14 | 
							
								3
							 | 
							bnj1317 | 
							 |-  ( w e. C -> A. f w e. C )  | 
						
						
							| 15 | 
							
								14
							 | 
							bnj1400 | 
							 |-  dom U. C = U_ f e. C dom f  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eqtri | 
							 |-  dom F = U_ f e. C dom f  | 
						
						
							| 17 | 
							
								12 16
							 | 
							eleqtrdi | 
							 |-  ( ph -> x e. U_ f e. C dom f )  | 
						
						
							| 18 | 
							
								17
							 | 
							bnj1405 | 
							 |-  ( ph -> E. f e. C x e. dom f )  | 
						
						
							| 19 | 
							
								18 6
							 | 
							bnj1209 | 
							 |-  ( ph -> E. f ps )  | 
						
						
							| 20 | 
							
								3
							 | 
							bnj1436 | 
							 |-  ( f e. C -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							bnj1299 | 
							 |-  ( f e. C -> E. d e. B f Fn d )  | 
						
						
							| 22 | 
							
								
							 | 
							fndm | 
							 |-  ( f Fn d -> dom f = d )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							bnj31 | 
							 |-  ( f e. C -> E. d e. B dom f = d )  | 
						
						
							| 24 | 
							
								6 23
							 | 
							bnj836 | 
							 |-  ( ps -> E. d e. B dom f = d )  | 
						
						
							| 25 | 
							
								1 2 3 4 5 6
							 | 
							bnj1518 | 
							 |-  ( ps -> A. d ps )  | 
						
						
							| 26 | 
							
								24 7 25
							 | 
							bnj1521 | 
							 |-  ( ps -> E. d ch )  | 
						
						
							| 27 | 
							
								9
							 | 
							fnfund | 
							 |-  ( R _FrSe A -> Fun F )  | 
						
						
							| 28 | 
							
								5 27
							 | 
							bnj832 | 
							 |-  ( ph -> Fun F )  | 
						
						
							| 29 | 
							
								6 28
							 | 
							bnj835 | 
							 |-  ( ps -> Fun F )  | 
						
						
							| 30 | 
							
								
							 | 
							elssuni | 
							 |-  ( f e. C -> f C_ U. C )  | 
						
						
							| 31 | 
							
								30 4
							 | 
							sseqtrrdi | 
							 |-  ( f e. C -> f C_ F )  | 
						
						
							| 32 | 
							
								6 31
							 | 
							bnj836 | 
							 |-  ( ps -> f C_ F )  | 
						
						
							| 33 | 
							
								6
							 | 
							simp3bi | 
							 |-  ( ps -> x e. dom f )  | 
						
						
							| 34 | 
							
								29 32 33
							 | 
							bnj1502 | 
							 |-  ( ps -> ( F ` x ) = ( f ` x ) )  | 
						
						
							| 35 | 
							
								1 2 3
							 | 
							bnj1514 | 
							 |-  ( f e. C -> A. x e. dom f ( f ` x ) = ( G ` Y ) )  | 
						
						
							| 36 | 
							
								6 35
							 | 
							bnj836 | 
							 |-  ( ps -> A. x e. dom f ( f ` x ) = ( G ` Y ) )  | 
						
						
							| 37 | 
							
								36 33
							 | 
							bnj1294 | 
							 |-  ( ps -> ( f ` x ) = ( G ` Y ) )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							eqtrd | 
							 |-  ( ps -> ( F ` x ) = ( G ` Y ) )  | 
						
						
							| 39 | 
							
								7 38
							 | 
							bnj835 | 
							 |-  ( ch -> ( F ` x ) = ( G ` Y ) )  | 
						
						
							| 40 | 
							
								7 29
							 | 
							bnj835 | 
							 |-  ( ch -> Fun F )  | 
						
						
							| 41 | 
							
								7 32
							 | 
							bnj835 | 
							 |-  ( ch -> f C_ F )  | 
						
						
							| 42 | 
							
								1
							 | 
							bnj1517 | 
							 |-  ( d e. B -> A. x e. d _pred ( x , A , R ) C_ d )  | 
						
						
							| 43 | 
							
								7 42
							 | 
							bnj836 | 
							 |-  ( ch -> A. x e. d _pred ( x , A , R ) C_ d )  | 
						
						
							| 44 | 
							
								7 33
							 | 
							bnj835 | 
							 |-  ( ch -> x e. dom f )  | 
						
						
							| 45 | 
							
								7
							 | 
							simp3bi | 
							 |-  ( ch -> dom f = d )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							eleqtrd | 
							 |-  ( ch -> x e. d )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							bnj1294 | 
							 |-  ( ch -> _pred ( x , A , R ) C_ d )  | 
						
						
							| 48 | 
							
								47 45
							 | 
							sseqtrrd | 
							 |-  ( ch -> _pred ( x , A , R ) C_ dom f )  | 
						
						
							| 49 | 
							
								40 41 48
							 | 
							bnj1503 | 
							 |-  ( ch -> ( F |` _pred ( x , A , R ) ) = ( f |` _pred ( x , A , R ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							opeq2d | 
							 |-  ( ch -> <. x , ( F |` _pred ( x , A , R ) ) >. = <. x , ( f |` _pred ( x , A , R ) ) >. )  | 
						
						
							| 51 | 
							
								50 2
							 | 
							eqtr4di | 
							 |-  ( ch -> <. x , ( F |` _pred ( x , A , R ) ) >. = Y )  | 
						
						
							| 52 | 
							
								51
							 | 
							fveq2d | 
							 |-  ( ch -> ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) = ( G ` Y ) )  | 
						
						
							| 53 | 
							
								39 52
							 | 
							eqtr4d | 
							 |-  ( ch -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 54 | 
							
								26 53
							 | 
							bnj593 | 
							 |-  ( ps -> E. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 55 | 
							
								1 2 3 4
							 | 
							bnj1519 | 
							 |-  ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							bnj1397 | 
							 |-  ( ps -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 57 | 
							
								19 56
							 | 
							bnj593 | 
							 |-  ( ph -> E. f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 58 | 
							
								1 2 3 4
							 | 
							bnj1520 | 
							 |-  ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							bnj1397 | 
							 |-  ( ph -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 60 | 
							
								5 59
							 | 
							bnj1459 | 
							 |-  ( R _FrSe A -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )  |