Metamath Proof Explorer


Theorem bnj1502

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1502.1
|- ( ph -> Fun F )
bnj1502.2
|- ( ph -> G C_ F )
bnj1502.3
|- ( ph -> A e. dom G )
Assertion bnj1502
|- ( ph -> ( F ` A ) = ( G ` A ) )

Proof

Step Hyp Ref Expression
1 bnj1502.1
 |-  ( ph -> Fun F )
2 bnj1502.2
 |-  ( ph -> G C_ F )
3 bnj1502.3
 |-  ( ph -> A e. dom G )
4 funssfv
 |-  ( ( Fun F /\ G C_ F /\ A e. dom G ) -> ( F ` A ) = ( G ` A ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( F ` A ) = ( G ` A ) )