Metamath Proof Explorer


Theorem bnj1517

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1517.1
|- A = { x | ( ph /\ ps ) }
Assertion bnj1517
|- ( x e. A -> ps )

Proof

Step Hyp Ref Expression
1 bnj1517.1
 |-  A = { x | ( ph /\ ps ) }
2 1 bnj1436
 |-  ( x e. A -> ( ph /\ ps ) )
3 2 simprd
 |-  ( x e. A -> ps )