Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1518.1 | |- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
					|
| bnj1518.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
					||
| bnj1518.3 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
					||
| bnj1518.4 | |- F = U. C  | 
					||
| bnj1518.5 | |- ( ph <-> ( R _FrSe A /\ x e. A ) )  | 
					||
| bnj1518.6 | |- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) )  | 
					||
| Assertion | bnj1518 | |- ( ps -> A. d ps )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1518.1 |  |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						|
| 2 | bnj1518.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						|
| 3 | bnj1518.3 |  |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						|
| 4 | bnj1518.4 | |- F = U. C  | 
						|
| 5 | bnj1518.5 | |- ( ph <-> ( R _FrSe A /\ x e. A ) )  | 
						|
| 6 | bnj1518.6 | |- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) )  | 
						|
| 7 | nfv | |- F/ d ph  | 
						|
| 8 | nfre1 | |- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )  | 
						|
| 9 | 8 | nfab |  |-  F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
| 10 | 3 9 | nfcxfr | |- F/_ d C  | 
						
| 11 | 10 | nfcri | |- F/ d f e. C  | 
						
| 12 | nfv | |- F/ d x e. dom f  | 
						|
| 13 | 7 11 12 | nf3an | |- F/ d ( ph /\ f e. C /\ x e. dom f )  | 
						
| 14 | 6 13 | nfxfr | |- F/ d ps  | 
						
| 15 | 14 | nf5ri | |- ( ps -> A. d ps )  |