Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1518.1 | |- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
|
bnj1518.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
||
bnj1518.3 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
||
bnj1518.4 | |- F = U. C |
||
bnj1518.5 | |- ( ph <-> ( R _FrSe A /\ x e. A ) ) |
||
bnj1518.6 | |- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) ) |
||
Assertion | bnj1518 | |- ( ps -> A. d ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1518.1 | |- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
|
2 | bnj1518.2 | |- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
|
3 | bnj1518.3 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
|
4 | bnj1518.4 | |- F = U. C |
|
5 | bnj1518.5 | |- ( ph <-> ( R _FrSe A /\ x e. A ) ) |
|
6 | bnj1518.6 | |- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) ) |
|
7 | nfv | |- F/ d ph |
|
8 | nfre1 | |- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
|
9 | 8 | nfab | |- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
10 | 3 9 | nfcxfr | |- F/_ d C |
11 | 10 | nfcri | |- F/ d f e. C |
12 | nfv | |- F/ d x e. dom f |
|
13 | 7 11 12 | nf3an | |- F/ d ( ph /\ f e. C /\ x e. dom f ) |
14 | 6 13 | nfxfr | |- F/ d ps |
15 | 14 | nf5ri | |- ( ps -> A. d ps ) |