Metamath Proof Explorer


Theorem bnj1518

Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1518.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1518.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1518.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1518.4
|- F = U. C
bnj1518.5
|- ( ph <-> ( R _FrSe A /\ x e. A ) )
bnj1518.6
|- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) )
Assertion bnj1518
|- ( ps -> A. d ps )

Proof

Step Hyp Ref Expression
1 bnj1518.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1518.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1518.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1518.4
 |-  F = U. C
5 bnj1518.5
 |-  ( ph <-> ( R _FrSe A /\ x e. A ) )
6 bnj1518.6
 |-  ( ps <-> ( ph /\ f e. C /\ x e. dom f ) )
7 nfv
 |-  F/ d ph
8 nfre1
 |-  F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
9 8 nfab
 |-  F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
10 3 9 nfcxfr
 |-  F/_ d C
11 10 nfcri
 |-  F/ d f e. C
12 nfv
 |-  F/ d x e. dom f
13 7 11 12 nf3an
 |-  F/ d ( ph /\ f e. C /\ x e. dom f )
14 6 13 nfxfr
 |-  F/ d ps
15 14 nf5ri
 |-  ( ps -> A. d ps )