Metamath Proof Explorer


Theorem bnj1519

Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1519.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1519.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1519.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1519.4
|- F = U. C
Assertion bnj1519
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )

Proof

Step Hyp Ref Expression
1 bnj1519.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1519.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1519.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1519.4
 |-  F = U. C
5 nfre1
 |-  F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
6 5 nfab
 |-  F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
7 3 6 nfcxfr
 |-  F/_ d C
8 7 nfuni
 |-  F/_ d U. C
9 4 8 nfcxfr
 |-  F/_ d F
10 nfcv
 |-  F/_ d x
11 9 10 nffv
 |-  F/_ d ( F ` x )
12 nfcv
 |-  F/_ d G
13 nfcv
 |-  F/_ d _pred ( x , A , R )
14 9 13 nfres
 |-  F/_ d ( F |` _pred ( x , A , R ) )
15 10 14 nfop
 |-  F/_ d <. x , ( F |` _pred ( x , A , R ) ) >.
16 12 15 nffv
 |-  F/_ d ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. )
17 11 16 nfeq
 |-  F/ d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. )
18 17 nf5ri
 |-  ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )