Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1519.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1519.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1519.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1519.4 |
|- F = U. C |
5 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
6 |
5
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
7 |
3 6
|
nfcxfr |
|- F/_ d C |
8 |
7
|
nfuni |
|- F/_ d U. C |
9 |
4 8
|
nfcxfr |
|- F/_ d F |
10 |
|
nfcv |
|- F/_ d x |
11 |
9 10
|
nffv |
|- F/_ d ( F ` x ) |
12 |
|
nfcv |
|- F/_ d G |
13 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
14 |
9 13
|
nfres |
|- F/_ d ( F |` _pred ( x , A , R ) ) |
15 |
10 14
|
nfop |
|- F/_ d <. x , ( F |` _pred ( x , A , R ) ) >. |
16 |
12 15
|
nffv |
|- F/_ d ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
17 |
11 16
|
nfeq |
|- F/ d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
18 |
17
|
nf5ri |
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |