Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1520.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1520.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1520.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1520.4 |
|- F = U. C |
5 |
3
|
bnj1317 |
|- ( w e. C -> A. f w e. C ) |
6 |
5
|
nfcii |
|- F/_ f C |
7 |
6
|
nfuni |
|- F/_ f U. C |
8 |
4 7
|
nfcxfr |
|- F/_ f F |
9 |
|
nfcv |
|- F/_ f x |
10 |
8 9
|
nffv |
|- F/_ f ( F ` x ) |
11 |
|
nfcv |
|- F/_ f G |
12 |
|
nfcv |
|- F/_ f _pred ( x , A , R ) |
13 |
8 12
|
nfres |
|- F/_ f ( F |` _pred ( x , A , R ) ) |
14 |
9 13
|
nfop |
|- F/_ f <. x , ( F |` _pred ( x , A , R ) ) >. |
15 |
11 14
|
nffv |
|- F/_ f ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
16 |
10 15
|
nfeq |
|- F/ f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
17 |
16
|
nf5ri |
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |