Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1521.1 | |- ( ch -> E. x e. B ph )  | 
					|
| bnj1521.2 | |- ( th <-> ( ch /\ x e. B /\ ph ) )  | 
					||
| bnj1521.3 | |- ( ch -> A. x ch )  | 
					||
| Assertion | bnj1521 | |- ( ch -> E. x th )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1521.1 | |- ( ch -> E. x e. B ph )  | 
						|
| 2 | bnj1521.2 | |- ( th <-> ( ch /\ x e. B /\ ph ) )  | 
						|
| 3 | bnj1521.3 | |- ( ch -> A. x ch )  | 
						|
| 4 | 1 | bnj1196 | |- ( ch -> E. x ( x e. B /\ ph ) )  | 
						
| 5 | 4 2 3 | bnj1345 | |- ( ch -> E. x th )  |