Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1525.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1525.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1525.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1525.4 |
|- F = U. C |
5 |
|
bnj1525.5 |
|- ( ph <-> ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) ) ) |
6 |
|
bnj1525.6 |
|- ( ps <-> ( ph /\ F =/= H ) ) |
7 |
|
nfv |
|- F/ x R _FrSe A |
8 |
|
nfv |
|- F/ x H Fn A |
9 |
|
nfra1 |
|- F/ x A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) |
10 |
7 8 9
|
nf3an |
|- F/ x ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) ) |
11 |
5 10
|
nfxfr |
|- F/ x ph |
12 |
1
|
bnj1309 |
|- ( w e. B -> A. x w e. B ) |
13 |
3 12
|
bnj1307 |
|- ( w e. C -> A. x w e. C ) |
14 |
13
|
nfcii |
|- F/_ x C |
15 |
14
|
nfuni |
|- F/_ x U. C |
16 |
4 15
|
nfcxfr |
|- F/_ x F |
17 |
|
nfcv |
|- F/_ x H |
18 |
16 17
|
nfne |
|- F/ x F =/= H |
19 |
11 18
|
nfan |
|- F/ x ( ph /\ F =/= H ) |
20 |
6 19
|
nfxfr |
|- F/ x ps |
21 |
20
|
nf5ri |
|- ( ps -> A. x ps ) |