Metamath Proof Explorer


Theorem bnj1525

Description: Technical lemma for bnj1522 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1525.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1525.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1525.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1525.4
|- F = U. C
bnj1525.5
|- ( ph <-> ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) ) )
bnj1525.6
|- ( ps <-> ( ph /\ F =/= H ) )
Assertion bnj1525
|- ( ps -> A. x ps )

Proof

Step Hyp Ref Expression
1 bnj1525.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1525.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1525.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1525.4
 |-  F = U. C
5 bnj1525.5
 |-  ( ph <-> ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) ) )
6 bnj1525.6
 |-  ( ps <-> ( ph /\ F =/= H ) )
7 nfv
 |-  F/ x R _FrSe A
8 nfv
 |-  F/ x H Fn A
9 nfra1
 |-  F/ x A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. )
10 7 8 9 nf3an
 |-  F/ x ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) )
11 5 10 nfxfr
 |-  F/ x ph
12 1 bnj1309
 |-  ( w e. B -> A. x w e. B )
13 3 12 bnj1307
 |-  ( w e. C -> A. x w e. C )
14 13 nfcii
 |-  F/_ x C
15 14 nfuni
 |-  F/_ x U. C
16 4 15 nfcxfr
 |-  F/_ x F
17 nfcv
 |-  F/_ x H
18 16 17 nfne
 |-  F/ x F =/= H
19 11 18 nfan
 |-  F/ x ( ph /\ F =/= H )
20 6 19 nfxfr
 |-  F/ x ps
21 20 nf5ri
 |-  ( ps -> A. x ps )