| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1525.1 | 
							 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } | 
						
						
							| 2 | 
							
								
							 | 
							bnj1525.2 | 
							 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1525.3 | 
							 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							bnj1525.4 | 
							 |-  F = U. C  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1525.5 | 
							 |-  ( ph <-> ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1525.6 | 
							 |-  ( ps <-> ( ph /\ F =/= H ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							 |-  F/ x R _FrSe A  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							 |-  F/ x H Fn A  | 
						
						
							| 9 | 
							
								
							 | 
							nfra1 | 
							 |-  F/ x A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							nf3an | 
							 |-  F/ x ( R _FrSe A /\ H Fn A /\ A. x e. A ( H ` x ) = ( G ` <. x , ( H |` _pred ( x , A , R ) ) >. ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							nfxfr | 
							 |-  F/ x ph  | 
						
						
							| 12 | 
							
								1
							 | 
							bnj1309 | 
							 |-  ( w e. B -> A. x w e. B )  | 
						
						
							| 13 | 
							
								3 12
							 | 
							bnj1307 | 
							 |-  ( w e. C -> A. x w e. C )  | 
						
						
							| 14 | 
							
								13
							 | 
							nfcii | 
							 |-  F/_ x C  | 
						
						
							| 15 | 
							
								14
							 | 
							nfuni | 
							 |-  F/_ x U. C  | 
						
						
							| 16 | 
							
								4 15
							 | 
							nfcxfr | 
							 |-  F/_ x F  | 
						
						
							| 17 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x H  | 
						
						
							| 18 | 
							
								16 17
							 | 
							nfne | 
							 |-  F/ x F =/= H  | 
						
						
							| 19 | 
							
								11 18
							 | 
							nfan | 
							 |-  F/ x ( ph /\ F =/= H )  | 
						
						
							| 20 | 
							
								6 19
							 | 
							nfxfr | 
							 |-  F/ x ps  | 
						
						
							| 21 | 
							
								20
							 | 
							nf5ri | 
							 |-  ( ps -> A. x ps )  |