Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1529.1 |
|- ( ch -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
2 |
|
bnj1529.2 |
|- ( w e. F -> A. x w e. F ) |
3 |
|
nfv |
|- F/ y ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
4 |
2
|
nfcii |
|- F/_ x F |
5 |
|
nfcv |
|- F/_ x y |
6 |
4 5
|
nffv |
|- F/_ x ( F ` y ) |
7 |
|
nfcv |
|- F/_ x G |
8 |
|
nfcv |
|- F/_ x _pred ( y , A , R ) |
9 |
4 8
|
nfres |
|- F/_ x ( F |` _pred ( y , A , R ) ) |
10 |
5 9
|
nfop |
|- F/_ x <. y , ( F |` _pred ( y , A , R ) ) >. |
11 |
7 10
|
nffv |
|- F/_ x ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) |
12 |
6 11
|
nfeq |
|- F/ x ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) |
13 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
14 |
|
id |
|- ( x = y -> x = y ) |
15 |
|
bnj602 |
|- ( x = y -> _pred ( x , A , R ) = _pred ( y , A , R ) ) |
16 |
15
|
reseq2d |
|- ( x = y -> ( F |` _pred ( x , A , R ) ) = ( F |` _pred ( y , A , R ) ) ) |
17 |
14 16
|
opeq12d |
|- ( x = y -> <. x , ( F |` _pred ( x , A , R ) ) >. = <. y , ( F |` _pred ( y , A , R ) ) >. ) |
18 |
17
|
fveq2d |
|- ( x = y -> ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |
19 |
13 18
|
eqeq12d |
|- ( x = y -> ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) <-> ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) ) |
20 |
3 12 19
|
cbvralw |
|- ( A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) <-> A. y e. A ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |
21 |
1 20
|
sylib |
|- ( ch -> A. y e. A ( F ` y ) = ( G ` <. y , ( F |` _pred ( y , A , R ) ) >. ) ) |