Step |
Hyp |
Ref |
Expression |
1 |
|
bnj153.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj153.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj153.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj153.4 |
|- ( th <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn n /\ ph /\ ps ) ) ) |
5 |
|
bnj153.5 |
|- ( ta <-> A. m e. D ( m _E n -> [. m / n ]. th ) ) |
6 |
|
biid |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
7 |
|
biid |
|- ( [. 1o / n ]. ph <-> [. 1o / n ]. ph ) |
8 |
1 7
|
bnj118 |
|- ( [. 1o / n ]. ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
9 |
8
|
bicomi |
|- ( ( f ` (/) ) = _pred ( x , A , R ) <-> [. 1o / n ]. ph ) |
10 |
|
bnj105 |
|- 1o e. _V |
11 |
2 10
|
bnj92 |
|- ( [. 1o / n ]. ps <-> A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
12 |
11
|
bicomi |
|- ( A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> [. 1o / n ]. ps ) |
13 |
|
biid |
|- ( [. 1o / n ]. th <-> [. 1o / n ]. th ) |
14 |
|
biid |
|- ( ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) <-> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
15 |
|
biid |
|- ( ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) <-> ( ( R _FrSe A /\ x e. A ) -> E* f ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
16 |
|
biid |
|- ( [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
17 |
|
biid |
|- ( [. 1o / n ]. ps <-> [. 1o / n ]. ps ) |
18 |
6 16 7 17
|
bnj121 |
|- ( [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) ) |
19 |
8
|
anbi2i |
|- ( ( f Fn 1o /\ [. 1o / n ]. ph ) <-> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) ) ) |
20 |
19 11
|
anbi12i |
|- ( ( ( f Fn 1o /\ [. 1o / n ]. ph ) /\ [. 1o / n ]. ps ) <-> ( ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
21 |
|
df-3an |
|- ( ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> ( ( f Fn 1o /\ [. 1o / n ]. ph ) /\ [. 1o / n ]. ps ) ) |
22 |
|
df-3an |
|- ( ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> ( ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
23 |
20 21 22
|
3bitr4i |
|- ( ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
24 |
23
|
imbi2i |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
25 |
18 24
|
bitri |
|- ( [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
26 |
25
|
bicomi |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) <-> [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
27 |
|
eqid |
|- { <. (/) , _pred ( x , A , R ) >. } = { <. (/) , _pred ( x , A , R ) >. } |
28 |
|
biid |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
29 |
|
biid |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
30 |
26
|
sbcbii |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
31 |
|
biid |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph ) |
32 |
|
biid |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) |
33 |
|
biid |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) ) |
34 |
27 31 32 33 18
|
bnj124 |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) ) ) |
35 |
1 7 31 27
|
bnj125 |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph <-> ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) ) |
36 |
35
|
anbi2i |
|- ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph ) <-> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) ) ) |
37 |
2 17 32 27
|
bnj126 |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps <-> A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) |
38 |
36 37
|
anbi12i |
|- ( ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph ) /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) <-> ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) |
39 |
|
df-3an |
|- ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) <-> ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph ) /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) ) |
40 |
|
df-3an |
|- ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) <-> ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) |
41 |
38 39 40
|
3bitr4i |
|- ( ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) <-> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) |
42 |
41
|
imbi2i |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ph /\ [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) ) |
43 |
34 42
|
bitri |
|- ( [. { <. (/) , _pred ( x , A , R ) >. } / f ]. [. 1o / n ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn n /\ ph /\ ps ) ) <-> ( ( R _FrSe A /\ x e. A ) -> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) ) |
44 |
30 43
|
bitr2i |
|- ( ( ( R _FrSe A /\ x e. A ) -> ( { <. (/) , _pred ( x , A , R ) >. } Fn 1o /\ ( { <. (/) , _pred ( x , A , R ) >. } ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( { <. (/) , _pred ( x , A , R ) >. } ` suc i ) = U_ y e. ( { <. (/) , _pred ( x , A , R ) >. } ` i ) _pred ( y , A , R ) ) ) ) <-> [. { <. (/) , _pred ( x , A , R ) >. } / f ]. ( ( R _FrSe A /\ x e. A ) -> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
45 |
|
biid |
|- ( ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
46 |
|
biid |
|- ( ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) |
47 |
|
biid |
|- ( [. g / f ]. ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> [. g / f ]. ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) ) |
48 |
|
biid |
|- ( [. g / f ]. [. 1o / n ]. ph <-> [. g / f ]. [. 1o / n ]. ph ) |
49 |
|
biid |
|- ( [. g / f ]. [. 1o / n ]. ps <-> [. g / f ]. [. 1o / n ]. ps ) |
50 |
46 47 48 49
|
bnj156 |
|- ( [. g / f ]. ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph /\ [. g / f ]. [. 1o / n ]. ps ) ) |
51 |
48 8
|
bnj154 |
|- ( [. g / f ]. [. 1o / n ]. ph <-> ( g ` (/) ) = _pred ( x , A , R ) ) |
52 |
51
|
anbi2i |
|- ( ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph ) <-> ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) ) ) |
53 |
17 11
|
bitri |
|- ( [. 1o / n ]. ps <-> A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
54 |
49 53
|
bnj155 |
|- ( [. g / f ]. [. 1o / n ]. ps <-> A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) |
55 |
52 54
|
anbi12i |
|- ( ( ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph ) /\ [. g / f ]. [. 1o / n ]. ps ) <-> ( ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
56 |
|
df-3an |
|- ( ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph /\ [. g / f ]. [. 1o / n ]. ps ) <-> ( ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph ) /\ [. g / f ]. [. 1o / n ]. ps ) ) |
57 |
|
df-3an |
|- ( ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) <-> ( ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
58 |
55 56 57
|
3bitr4i |
|- ( ( g Fn 1o /\ [. g / f ]. [. 1o / n ]. ph /\ [. g / f ]. [. 1o / n ]. ps ) <-> ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
59 |
50 58
|
bitri |
|- ( [. g / f ]. ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
60 |
23
|
sbcbii |
|- ( [. g / f ]. ( f Fn 1o /\ [. 1o / n ]. ph /\ [. 1o / n ]. ps ) <-> [. g / f ]. ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
61 |
59 60
|
bitr3i |
|- ( ( g Fn 1o /\ ( g ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) <-> [. g / f ]. ( f Fn 1o /\ ( f ` (/) ) = _pred ( x , A , R ) /\ A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
62 |
|
biid |
|- ( [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
63 |
|
biid |
|- ( [. g / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> [. g / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
64 |
1 2 3 4 5 6 9 12 13 14 15 26 27 28 29 44 45 61 62 63
|
bnj151 |
|- ( n = 1o -> ( ( n e. D /\ ta ) -> th ) ) |