Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1538.1 | |- A = { x e. B | ph } |
|
Assertion | bnj1538 | |- ( x e. A -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1538.1 | |- A = { x e. B | ph } |
|
2 | 1 | rabeq2i | |- ( x e. A <-> ( x e. B /\ ph ) ) |
3 | 2 | simprbi | |- ( x e. A -> ph ) |