Metamath Proof Explorer


Theorem bnj154

Description: Technical lemma for bnj153 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj154.1
|- ( ph1 <-> [. g / f ]. ph' )
bnj154.2
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) )
Assertion bnj154
|- ( ph1 <-> ( g ` (/) ) = _pred ( x , A , R ) )

Proof

Step Hyp Ref Expression
1 bnj154.1
 |-  ( ph1 <-> [. g / f ]. ph' )
2 bnj154.2
 |-  ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) )
3 2 sbcbii
 |-  ( [. g / f ]. ph' <-> [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) )
4 vex
 |-  g e. _V
5 fveq1
 |-  ( f = g -> ( f ` (/) ) = ( g ` (/) ) )
6 5 eqeq1d
 |-  ( f = g -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) ) )
7 4 6 sbcie
 |-  ( [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) )
8 1 3 7 3bitri
 |-  ( ph1 <-> ( g ` (/) ) = _pred ( x , A , R ) )