Description: Technical lemma for bnj153 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj154.1 | |- ( ph1 <-> [. g / f ]. ph' ) |
|
bnj154.2 | |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
||
Assertion | bnj154 | |- ( ph1 <-> ( g ` (/) ) = _pred ( x , A , R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj154.1 | |- ( ph1 <-> [. g / f ]. ph' ) |
|
2 | bnj154.2 | |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
|
3 | 2 | sbcbii | |- ( [. g / f ]. ph' <-> [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
4 | vex | |- g e. _V |
|
5 | fveq1 | |- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
|
6 | 5 | eqeq1d | |- ( f = g -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) ) ) |
7 | 4 6 | sbcie | |- ( [. g / f ]. ( f ` (/) ) = _pred ( x , A , R ) <-> ( g ` (/) ) = _pred ( x , A , R ) ) |
8 | 1 3 7 | 3bitri | |- ( ph1 <-> ( g ` (/) ) = _pred ( x , A , R ) ) |