Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj158.1 | |- D = ( _om \ { (/) } ) |
|
Assertion | bnj158 | |- ( m e. D -> E. p e. _om m = suc p ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj158.1 | |- D = ( _om \ { (/) } ) |
|
2 | 1 | eleq2i | |- ( m e. D <-> m e. ( _om \ { (/) } ) ) |
3 | eldifsn | |- ( m e. ( _om \ { (/) } ) <-> ( m e. _om /\ m =/= (/) ) ) |
|
4 | 2 3 | bitri | |- ( m e. D <-> ( m e. _om /\ m =/= (/) ) ) |
5 | nnsuc | |- ( ( m e. _om /\ m =/= (/) ) -> E. p e. _om m = suc p ) |
|
6 | 4 5 | sylbi | |- ( m e. D -> E. p e. _om m = suc p ) |