Metamath Proof Explorer


Theorem bnj158

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj158.1
|- D = ( _om \ { (/) } )
Assertion bnj158
|- ( m e. D -> E. p e. _om m = suc p )

Proof

Step Hyp Ref Expression
1 bnj158.1
 |-  D = ( _om \ { (/) } )
2 1 eleq2i
 |-  ( m e. D <-> m e. ( _om \ { (/) } ) )
3 eldifsn
 |-  ( m e. ( _om \ { (/) } ) <-> ( m e. _om /\ m =/= (/) ) )
4 2 3 bitri
 |-  ( m e. D <-> ( m e. _om /\ m =/= (/) ) )
5 nnsuc
 |-  ( ( m e. _om /\ m =/= (/) ) -> E. p e. _om m = suc p )
6 4 5 sylbi
 |-  ( m e. D -> E. p e. _om m = suc p )