Step |
Hyp |
Ref |
Expression |
1 |
|
bnj602 |
|- ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) ) |
2 |
1
|
eqeq2d |
|- ( X = Y -> ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( Y , A , R ) ) ) |
3 |
2
|
3anbi2d |
|- ( X = Y -> ( ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
4 |
3
|
rexbidv |
|- ( X = Y -> ( E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) ) |
5 |
4
|
abbidv |
|- ( X = Y -> { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) |
6 |
5
|
eleq2d |
|- ( X = Y -> ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } <-> f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) ) |
7 |
6
|
anbi1d |
|- ( X = Y -> ( ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } /\ x e. U_ i e. dom f ( f ` i ) ) <-> ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } /\ x e. U_ i e. dom f ( f ` i ) ) ) ) |
8 |
7
|
rexbidv2 |
|- ( X = Y -> ( E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) <-> E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) ) ) |
9 |
8
|
abbidv |
|- ( X = Y -> { x | E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) } = { x | E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) } ) |
10 |
|
df-iun |
|- U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) = { x | E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) } |
11 |
|
df-iun |
|- U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) = { x | E. f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } x e. U_ i e. dom f ( f ` i ) } |
12 |
9 10 11
|
3eqtr4g |
|- ( X = Y -> U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) ) |
13 |
|
df-bnj18 |
|- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
14 |
|
df-bnj18 |
|- _trCl ( Y , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( Y , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
15 |
12 13 14
|
3eqtr4g |
|- ( X = Y -> _trCl ( X , A , R ) = _trCl ( Y , A , R ) ) |