Step |
Hyp |
Ref |
Expression |
1 |
|
bnj206.1 |
|- ( ph' <-> [. M / n ]. ph ) |
2 |
|
bnj206.2 |
|- ( ps' <-> [. M / n ]. ps ) |
3 |
|
bnj206.3 |
|- ( ch' <-> [. M / n ]. ch ) |
4 |
|
bnj206.4 |
|- M e. _V |
5 |
|
sbc3an |
|- ( [. M / n ]. ( ph /\ ps /\ ch ) <-> ( [. M / n ]. ph /\ [. M / n ]. ps /\ [. M / n ]. ch ) ) |
6 |
1
|
bicomi |
|- ( [. M / n ]. ph <-> ph' ) |
7 |
2
|
bicomi |
|- ( [. M / n ]. ps <-> ps' ) |
8 |
3
|
bicomi |
|- ( [. M / n ]. ch <-> ch' ) |
9 |
6 7 8
|
3anbi123i |
|- ( ( [. M / n ]. ph /\ [. M / n ]. ps /\ [. M / n ]. ch ) <-> ( ph' /\ ps' /\ ch' ) ) |
10 |
5 9
|
bitri |
|- ( [. M / n ]. ( ph /\ ps /\ ch ) <-> ( ph' /\ ps' /\ ch' ) ) |