Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj216.1 | |- B e. _V |
|
Assertion | bnj216 | |- ( A = suc B -> B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj216.1 | |- B e. _V |
|
2 | 1 | sucid | |- B e. suc B |
3 | eleq2 | |- ( A = suc B -> ( B e. A <-> B e. suc B ) ) |
|
4 | 2 3 | mpbiri | |- ( A = suc B -> B e. A ) |