Metamath Proof Explorer


Theorem bnj228

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj228.1
|- ( ph <-> A. x e. A ps )
Assertion bnj228
|- ( ( x e. A /\ ph ) -> ps )

Proof

Step Hyp Ref Expression
1 bnj228.1
 |-  ( ph <-> A. x e. A ps )
2 rsp
 |-  ( A. x e. A ps -> ( x e. A -> ps ) )
3 1 2 sylbi
 |-  ( ph -> ( x e. A -> ps ) )
4 3 impcom
 |-  ( ( x e. A /\ ph ) -> ps )