Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj228.1 | |- ( ph <-> A. x e. A ps ) |
|
| Assertion | bnj228 | |- ( ( x e. A /\ ph ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj228.1 | |- ( ph <-> A. x e. A ps ) |
|
| 2 | rsp | |- ( A. x e. A ps -> ( x e. A -> ps ) ) |
|
| 3 | 1 2 | sylbi | |- ( ph -> ( x e. A -> ps ) ) |
| 4 | 3 | impcom | |- ( ( x e. A /\ ph ) -> ps ) |