| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj229.1 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. N -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj213 | 
							 |-  _pred ( y , A , R ) C_ A  | 
						
						
							| 3 | 
							
								2
							 | 
							bnj226 | 
							 |-  U_ y e. ( F ` m ) _pred ( y , A , R ) C_ A  | 
						
						
							| 4 | 
							
								1
							 | 
							bnj222 | 
							 |-  ( ps <-> A. m e. _om ( suc m e. N -> ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							bnj228 | 
							 |-  ( ( m e. _om /\ ps ) -> ( suc m e. N -> ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( suc m = n /\ ( m e. _om /\ ps ) ) -> ( suc m e. N -> ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							 |-  ( suc m = n -> ( suc m e. N <-> n e. N ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveqeq2 | 
							 |-  ( suc m = n -> ( ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) <-> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							imbi12d | 
							 |-  ( suc m = n -> ( ( suc m e. N -> ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) <-> ( n e. N -> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( suc m = n /\ ( m e. _om /\ ps ) ) -> ( ( suc m e. N -> ( F ` suc m ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) <-> ( n e. N -> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mpbid | 
							 |-  ( ( suc m = n /\ ( m e. _om /\ ps ) ) -> ( n e. N -> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impb | 
							 |-  ( ( suc m = n /\ m e. _om /\ ps ) -> ( n e. N -> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							impcom | 
							 |-  ( ( n e. N /\ ( suc m = n /\ m e. _om /\ ps ) ) -> ( F ` n ) = U_ y e. ( F ` m ) _pred ( y , A , R ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							bnj1262 | 
							 |-  ( ( n e. N /\ ( suc m = n /\ m e. _om /\ ps ) ) -> ( F ` n ) C_ A )  |