Metamath Proof Explorer


Theorem bnj248

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj248
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ th ) )

Proof

Step Hyp Ref Expression
1 df-bnj17
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) )
2 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
3 2 anbi1i
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ th ) )
4 1 3 bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ th ) )