Metamath Proof Explorer


Theorem bnj250

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj250
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) )

Proof

Step Hyp Ref Expression
1 df-bnj17
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) )
2 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
3 2 anbi1i
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ph /\ ( ps /\ ch ) ) /\ th ) )
4 anass
 |-  ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) )
5 1 3 4 3bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) )