Metamath Proof Explorer


Theorem bnj251

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj251
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) )

Proof

Step Hyp Ref Expression
1 bnj250
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) )
2 anass
 |-  ( ( ( ps /\ ch ) /\ th ) <-> ( ps /\ ( ch /\ th ) ) )
3 2 anbi2i
 |-  ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) )
4 1 3 bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) )