Metamath Proof Explorer


Theorem bnj255

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj255
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ps /\ ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 bnj251
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) )
2 3anass
 |-  ( ( ph /\ ps /\ ( ch /\ th ) ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) )
3 1 2 bitr4i
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ps /\ ( ch /\ th ) ) )