Metamath Proof Explorer


Theorem bnj257

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj257
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ps /\ th /\ ch ) )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( ch /\ th ) <-> ( th /\ ch ) )
2 1 anbi2i
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( th /\ ch ) ) )
3 bnj256
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) )
4 bnj256
 |-  ( ( ph /\ ps /\ th /\ ch ) <-> ( ( ph /\ ps ) /\ ( th /\ ch ) ) )
5 2 3 4 3bitr4i
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ps /\ th /\ ch ) )