Metamath Proof Explorer


Theorem bnj268

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj268
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ch /\ ps /\ th ) )

Proof

Step Hyp Ref Expression
1 3ancomb
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ch /\ ps ) )
2 1 anbi1i
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) <-> ( ( ph /\ ch /\ ps ) /\ th ) )
3 df-bnj17
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) )
4 df-bnj17
 |-  ( ( ph /\ ch /\ ps /\ th ) <-> ( ( ph /\ ch /\ ps ) /\ th ) )
5 2 3 4 3bitr4i
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ch /\ ps /\ th ) )