Metamath Proof Explorer


Theorem bnj290

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj290
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ch /\ th /\ ps ) )

Proof

Step Hyp Ref Expression
1 3anrot
 |-  ( ( ps /\ ch /\ th ) <-> ( ch /\ th /\ ps ) )
2 1 anbi2i
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ph /\ ( ch /\ th /\ ps ) ) )
3 bnj252
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ( ps /\ ch /\ th ) ) )
4 bnj252
 |-  ( ( ph /\ ch /\ th /\ ps ) <-> ( ph /\ ( ch /\ th /\ ps ) ) )
5 2 3 4 3bitr4i
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ch /\ th /\ ps ) )