Metamath Proof Explorer


Theorem bnj31

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj31.1
|- ( ph -> E. x e. A ps )
bnj31.2
|- ( ps -> ch )
Assertion bnj31
|- ( ph -> E. x e. A ch )

Proof

Step Hyp Ref Expression
1 bnj31.1
 |-  ( ph -> E. x e. A ps )
2 bnj31.2
 |-  ( ps -> ch )
3 2 reximi
 |-  ( E. x e. A ps -> E. x e. A ch )
4 1 3 syl
 |-  ( ph -> E. x e. A ch )