Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj31.1 | |- ( ph -> E. x e. A ps ) |
|
bnj31.2 | |- ( ps -> ch ) |
||
Assertion | bnj31 | |- ( ph -> E. x e. A ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj31.1 | |- ( ph -> E. x e. A ps ) |
|
2 | bnj31.2 | |- ( ps -> ch ) |
|
3 | 2 | reximi | |- ( E. x e. A ps -> E. x e. A ch ) |
4 | 1 3 | syl | |- ( ph -> E. x e. A ch ) |