Metamath Proof Explorer


Theorem bnj334

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj334
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ch /\ ph /\ ps /\ th ) )

Proof

Step Hyp Ref Expression
1 bnj290
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ch /\ th /\ ps ) )
2 bnj257
 |-  ( ( ph /\ ch /\ th /\ ps ) <-> ( ph /\ ch /\ ps /\ th ) )
3 bnj312
 |-  ( ( ph /\ ch /\ ps /\ th ) <-> ( ch /\ ph /\ ps /\ th ) )
4 1 2 3 3bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ch /\ ph /\ ps /\ th ) )