Metamath Proof Explorer


Theorem bnj432

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj432
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ch /\ th ) /\ ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 bnj422
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ch /\ th /\ ph /\ ps ) )
2 bnj256
 |-  ( ( ch /\ th /\ ph /\ ps ) <-> ( ( ch /\ th ) /\ ( ph /\ ps ) ) )
3 1 2 bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ch /\ th ) /\ ( ph /\ ps ) ) )