Metamath Proof Explorer


Theorem bnj518

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj518.1
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) )
bnj518.2
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj518.3
|- ( ta <-> ( ph /\ ps /\ n e. _om /\ p e. n ) )
Assertion bnj518
|- ( ( R _FrSe A /\ ta ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V )

Proof

Step Hyp Ref Expression
1 bnj518.1
 |-  ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) )
2 bnj518.2
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
3 bnj518.3
 |-  ( ta <-> ( ph /\ ps /\ n e. _om /\ p e. n ) )
4 bnj334
 |-  ( ( ph /\ ps /\ n e. _om /\ p e. n ) <-> ( n e. _om /\ ph /\ ps /\ p e. n ) )
5 3 4 bitri
 |-  ( ta <-> ( n e. _om /\ ph /\ ps /\ p e. n ) )
6 df-bnj17
 |-  ( ( n e. _om /\ ph /\ ps /\ p e. n ) <-> ( ( n e. _om /\ ph /\ ps ) /\ p e. n ) )
7 1 2 bnj517
 |-  ( ( n e. _om /\ ph /\ ps ) -> A. p e. n ( f ` p ) C_ A )
8 7 r19.21bi
 |-  ( ( ( n e. _om /\ ph /\ ps ) /\ p e. n ) -> ( f ` p ) C_ A )
9 6 8 sylbi
 |-  ( ( n e. _om /\ ph /\ ps /\ p e. n ) -> ( f ` p ) C_ A )
10 5 9 sylbi
 |-  ( ta -> ( f ` p ) C_ A )
11 ssel
 |-  ( ( f ` p ) C_ A -> ( y e. ( f ` p ) -> y e. A ) )
12 bnj93
 |-  ( ( R _FrSe A /\ y e. A ) -> _pred ( y , A , R ) e. _V )
13 12 ex
 |-  ( R _FrSe A -> ( y e. A -> _pred ( y , A , R ) e. _V ) )
14 11 13 sylan9r
 |-  ( ( R _FrSe A /\ ( f ` p ) C_ A ) -> ( y e. ( f ` p ) -> _pred ( y , A , R ) e. _V ) )
15 14 ralrimiv
 |-  ( ( R _FrSe A /\ ( f ` p ) C_ A ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V )
16 10 15 sylan2
 |-  ( ( R _FrSe A /\ ta ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V )