Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj526.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
bnj526.2 | |- ( ph" <-> [. G / f ]. ph ) |
||
bnj526.3 | |- G e. _V |
||
Assertion | bnj526 | |- ( ph" <-> ( G ` (/) ) = _pred ( X , A , R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj526.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
2 | bnj526.2 | |- ( ph" <-> [. G / f ]. ph ) |
|
3 | bnj526.3 | |- G e. _V |
|
4 | 1 | sbcbii | |- ( [. G / f ]. ph <-> [. G / f ]. ( f ` (/) ) = _pred ( X , A , R ) ) |
5 | fveq1 | |- ( f = G -> ( f ` (/) ) = ( G ` (/) ) ) |
|
6 | 5 | eqeq1d | |- ( f = G -> ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( G ` (/) ) = _pred ( X , A , R ) ) ) |
7 | 3 6 | sbcie | |- ( [. G / f ]. ( f ` (/) ) = _pred ( X , A , R ) <-> ( G ` (/) ) = _pred ( X , A , R ) ) |
8 | 2 4 7 | 3bitri | |- ( ph" <-> ( G ` (/) ) = _pred ( X , A , R ) ) |