Metamath Proof Explorer


Theorem bnj534

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj534.1
|- ( ch -> ( E. x ph /\ ps ) )
Assertion bnj534
|- ( ch -> E. x ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 bnj534.1
 |-  ( ch -> ( E. x ph /\ ps ) )
2 19.41v
 |-  ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) )
3 1 2 sylibr
 |-  ( ch -> E. x ( ph /\ ps ) )