Step |
Hyp |
Ref |
Expression |
1 |
|
bnj535.1 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj535.2 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj535.3 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
4 |
|
bnj535.4 |
|- ( ta <-> ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) |
5 |
|
bnj422 |
|- ( ( R _FrSe A /\ ta /\ n = ( m u. { m } ) /\ f Fn m ) <-> ( n = ( m u. { m } ) /\ f Fn m /\ R _FrSe A /\ ta ) ) |
6 |
|
bnj251 |
|- ( ( n = ( m u. { m } ) /\ f Fn m /\ R _FrSe A /\ ta ) <-> ( n = ( m u. { m } ) /\ ( f Fn m /\ ( R _FrSe A /\ ta ) ) ) ) |
7 |
5 6
|
bitri |
|- ( ( R _FrSe A /\ ta /\ n = ( m u. { m } ) /\ f Fn m ) <-> ( n = ( m u. { m } ) /\ ( f Fn m /\ ( R _FrSe A /\ ta ) ) ) ) |
8 |
|
fvex |
|- ( f ` p ) e. _V |
9 |
1 2 4
|
bnj518 |
|- ( ( R _FrSe A /\ ta ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
10 |
|
iunexg |
|- ( ( ( f ` p ) e. _V /\ A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
11 |
8 9 10
|
sylancr |
|- ( ( R _FrSe A /\ ta ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
12 |
|
vex |
|- m e. _V |
13 |
12
|
bnj519 |
|- ( U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V -> Fun { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
14 |
11 13
|
syl |
|- ( ( R _FrSe A /\ ta ) -> Fun { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
15 |
|
dmsnopg |
|- ( U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V -> dom { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } = { m } ) |
16 |
11 15
|
syl |
|- ( ( R _FrSe A /\ ta ) -> dom { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } = { m } ) |
17 |
14 16
|
bnj1422 |
|- ( ( R _FrSe A /\ ta ) -> { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } Fn { m } ) |
18 |
|
bnj521 |
|- ( m i^i { m } ) = (/) |
19 |
|
fnun |
|- ( ( ( f Fn m /\ { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } Fn { m } ) /\ ( m i^i { m } ) = (/) ) -> ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) Fn ( m u. { m } ) ) |
20 |
18 19
|
mpan2 |
|- ( ( f Fn m /\ { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } Fn { m } ) -> ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) Fn ( m u. { m } ) ) |
21 |
17 20
|
sylan2 |
|- ( ( f Fn m /\ ( R _FrSe A /\ ta ) ) -> ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) Fn ( m u. { m } ) ) |
22 |
3
|
fneq1i |
|- ( G Fn ( m u. { m } ) <-> ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) Fn ( m u. { m } ) ) |
23 |
21 22
|
sylibr |
|- ( ( f Fn m /\ ( R _FrSe A /\ ta ) ) -> G Fn ( m u. { m } ) ) |
24 |
|
fneq2 |
|- ( n = ( m u. { m } ) -> ( G Fn n <-> G Fn ( m u. { m } ) ) ) |
25 |
23 24
|
syl5ibr |
|- ( n = ( m u. { m } ) -> ( ( f Fn m /\ ( R _FrSe A /\ ta ) ) -> G Fn n ) ) |
26 |
25
|
imp |
|- ( ( n = ( m u. { m } ) /\ ( f Fn m /\ ( R _FrSe A /\ ta ) ) ) -> G Fn n ) |
27 |
7 26
|
sylbi |
|- ( ( R _FrSe A /\ ta /\ n = ( m u. { m } ) /\ f Fn m ) -> G Fn n ) |