Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj538.1 | |- A e. _V |
|
Assertion | bnj538 | |- ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj538.1 | |- A e. _V |
|
2 | sbcralg | |- ( A e. _V -> ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) ) |
|
3 | 1 2 | ax-mp | |- ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) |