Metamath Proof Explorer


Theorem bnj538

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypothesis bnj538.1
|- A e. _V
Assertion bnj538
|- ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph )

Proof

Step Hyp Ref Expression
1 bnj538.1
 |-  A e. _V
2 sbcralg
 |-  ( A e. _V -> ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph ) )
3 1 2 ax-mp
 |-  ( [. A / y ]. A. x e. B ph <-> A. x e. B [. A / y ]. ph )