Step |
Hyp |
Ref |
Expression |
1 |
|
bnj543.1 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj543.2 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj543.3 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
4 |
|
bnj543.4 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
5 |
|
bnj543.5 |
|- ( si <-> ( m e. _om /\ n = suc m /\ p e. m ) ) |
6 |
|
bnj257 |
|- ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) /\ f Fn m /\ n = suc m ) ) |
7 |
|
bnj268 |
|- ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) /\ f Fn m /\ n = suc m ) <-> ( ( ph' /\ ps' ) /\ f Fn m /\ ( m e. _om /\ p e. m ) /\ n = suc m ) ) |
8 |
6 7
|
bitri |
|- ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( ( ph' /\ ps' ) /\ f Fn m /\ ( m e. _om /\ p e. m ) /\ n = suc m ) ) |
9 |
|
bnj253 |
|- ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) /\ n = suc m /\ f Fn m ) ) |
10 |
|
bnj256 |
|- ( ( ( ph' /\ ps' ) /\ f Fn m /\ ( m e. _om /\ p e. m ) /\ n = suc m ) <-> ( ( ( ph' /\ ps' ) /\ f Fn m ) /\ ( ( m e. _om /\ p e. m ) /\ n = suc m ) ) ) |
11 |
8 9 10
|
3bitr3i |
|- ( ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) /\ n = suc m /\ f Fn m ) <-> ( ( ( ph' /\ ps' ) /\ f Fn m ) /\ ( ( m e. _om /\ p e. m ) /\ n = suc m ) ) ) |
12 |
|
bnj256 |
|- ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) <-> ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) ) |
13 |
12
|
3anbi1i |
|- ( ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) /\ n = suc m /\ f Fn m ) ) |
14 |
|
bnj170 |
|- ( ( f Fn m /\ ph' /\ ps' ) <-> ( ( ph' /\ ps' ) /\ f Fn m ) ) |
15 |
4 14
|
bitri |
|- ( ta <-> ( ( ph' /\ ps' ) /\ f Fn m ) ) |
16 |
|
3anan32 |
|- ( ( m e. _om /\ n = suc m /\ p e. m ) <-> ( ( m e. _om /\ p e. m ) /\ n = suc m ) ) |
17 |
5 16
|
bitri |
|- ( si <-> ( ( m e. _om /\ p e. m ) /\ n = suc m ) ) |
18 |
15 17
|
anbi12i |
|- ( ( ta /\ si ) <-> ( ( ( ph' /\ ps' ) /\ f Fn m ) /\ ( ( m e. _om /\ p e. m ) /\ n = suc m ) ) ) |
19 |
11 13 18
|
3bitr4ri |
|- ( ( ta /\ si ) <-> ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) ) |
20 |
19
|
anbi2i |
|- ( ( R _FrSe A /\ ( ta /\ si ) ) <-> ( R _FrSe A /\ ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) ) ) |
21 |
|
3anass |
|- ( ( R _FrSe A /\ ta /\ si ) <-> ( R _FrSe A /\ ( ta /\ si ) ) ) |
22 |
|
bnj252 |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( R _FrSe A /\ ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) ) ) |
23 |
20 21 22
|
3bitr4i |
|- ( ( R _FrSe A /\ ta /\ si ) <-> ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) ) |
24 |
|
df-suc |
|- suc m = ( m u. { m } ) |
25 |
24
|
eqeq2i |
|- ( n = suc m <-> n = ( m u. { m } ) ) |
26 |
25
|
3anbi2i |
|- ( ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) ) |
27 |
26
|
anbi2i |
|- ( ( R _FrSe A /\ ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) ) <-> ( R _FrSe A /\ ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) ) ) |
28 |
|
bnj252 |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) <-> ( R _FrSe A /\ ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) ) ) |
29 |
27 22 28
|
3bitr4i |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) <-> ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) ) |
30 |
|
biid |
|- ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) <-> ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) |
31 |
1 2 3 30
|
bnj535 |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = ( m u. { m } ) /\ f Fn m ) -> G Fn n ) |
32 |
29 31
|
sylbi |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) /\ n = suc m /\ f Fn m ) -> G Fn n ) |
33 |
23 32
|
sylbi |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |