Step |
Hyp |
Ref |
Expression |
1 |
|
bnj545.1 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj545.2 |
|- D = ( _om \ { (/) } ) |
3 |
|
bnj545.3 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
4 |
|
bnj545.4 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
5 |
|
bnj545.5 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
6 |
|
bnj545.6 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
7 |
|
bnj545.7 |
|- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) |
8 |
4
|
simp1bi |
|- ( ta -> f Fn m ) |
9 |
5
|
simp1bi |
|- ( si -> m e. D ) |
10 |
8 9
|
anim12i |
|- ( ( ta /\ si ) -> ( f Fn m /\ m e. D ) ) |
11 |
10
|
3adant1 |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( f Fn m /\ m e. D ) ) |
12 |
2
|
bnj529 |
|- ( m e. D -> (/) e. m ) |
13 |
|
fndm |
|- ( f Fn m -> dom f = m ) |
14 |
|
eleq2 |
|- ( dom f = m -> ( (/) e. dom f <-> (/) e. m ) ) |
15 |
14
|
biimparc |
|- ( ( (/) e. m /\ dom f = m ) -> (/) e. dom f ) |
16 |
12 13 15
|
syl2anr |
|- ( ( f Fn m /\ m e. D ) -> (/) e. dom f ) |
17 |
11 16
|
syl |
|- ( ( R _FrSe A /\ ta /\ si ) -> (/) e. dom f ) |
18 |
6
|
fnfund |
|- ( ( R _FrSe A /\ ta /\ si ) -> Fun G ) |
19 |
17 18
|
jca |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( (/) e. dom f /\ Fun G ) ) |
20 |
3
|
bnj931 |
|- f C_ G |
21 |
19 20
|
jctil |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( f C_ G /\ ( (/) e. dom f /\ Fun G ) ) ) |
22 |
|
df-3an |
|- ( ( (/) e. dom f /\ Fun G /\ f C_ G ) <-> ( ( (/) e. dom f /\ Fun G ) /\ f C_ G ) ) |
23 |
|
3anrot |
|- ( ( (/) e. dom f /\ Fun G /\ f C_ G ) <-> ( Fun G /\ f C_ G /\ (/) e. dom f ) ) |
24 |
|
ancom |
|- ( ( ( (/) e. dom f /\ Fun G ) /\ f C_ G ) <-> ( f C_ G /\ ( (/) e. dom f /\ Fun G ) ) ) |
25 |
22 23 24
|
3bitr3i |
|- ( ( Fun G /\ f C_ G /\ (/) e. dom f ) <-> ( f C_ G /\ ( (/) e. dom f /\ Fun G ) ) ) |
26 |
21 25
|
sylibr |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( Fun G /\ f C_ G /\ (/) e. dom f ) ) |
27 |
|
funssfv |
|- ( ( Fun G /\ f C_ G /\ (/) e. dom f ) -> ( G ` (/) ) = ( f ` (/) ) ) |
28 |
26 27
|
syl |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( G ` (/) ) = ( f ` (/) ) ) |
29 |
4
|
simp2bi |
|- ( ta -> ph' ) |
30 |
29
|
3ad2ant2 |
|- ( ( R _FrSe A /\ ta /\ si ) -> ph' ) |
31 |
|
eqtr |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ( f ` (/) ) = _pred ( x , A , R ) ) -> ( G ` (/) ) = _pred ( x , A , R ) ) |
32 |
1 31
|
sylan2b |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ( G ` (/) ) = _pred ( x , A , R ) ) |
33 |
32 7
|
sylibr |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph' ) -> ph" ) |
34 |
28 30 33
|
syl2anc |
|- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) |