Step |
Hyp |
Ref |
Expression |
1 |
|
bnj546.1 |
|- D = ( _om \ { (/) } ) |
2 |
|
bnj546.2 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
3 |
|
bnj546.3 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
4 |
|
bnj546.4 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
5 |
|
bnj546.5 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
6 |
|
3simpc |
|- ( ( f Fn m /\ ph' /\ ps' ) -> ( ph' /\ ps' ) ) |
7 |
2 6
|
sylbi |
|- ( ta -> ( ph' /\ ps' ) ) |
8 |
1
|
bnj923 |
|- ( m e. D -> m e. _om ) |
9 |
8
|
3ad2ant1 |
|- ( ( m e. D /\ n = suc m /\ p e. m ) -> m e. _om ) |
10 |
|
simp3 |
|- ( ( m e. D /\ n = suc m /\ p e. m ) -> p e. m ) |
11 |
9 10
|
jca |
|- ( ( m e. D /\ n = suc m /\ p e. m ) -> ( m e. _om /\ p e. m ) ) |
12 |
3 11
|
sylbi |
|- ( si -> ( m e. _om /\ p e. m ) ) |
13 |
7 12
|
anim12i |
|- ( ( ta /\ si ) -> ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) ) |
14 |
|
bnj256 |
|- ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) <-> ( ( ph' /\ ps' ) /\ ( m e. _om /\ p e. m ) ) ) |
15 |
13 14
|
sylibr |
|- ( ( ta /\ si ) -> ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) |
16 |
15
|
anim2i |
|- ( ( R _FrSe A /\ ( ta /\ si ) ) -> ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) ) |
17 |
16
|
3impb |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) ) |
18 |
|
biid |
|- ( ( ph' /\ ps' /\ m e. _om /\ p e. m ) <-> ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) |
19 |
4 5 18
|
bnj518 |
|- ( ( R _FrSe A /\ ( ph' /\ ps' /\ m e. _om /\ p e. m ) ) -> A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
20 |
|
fvex |
|- ( f ` p ) e. _V |
21 |
|
iunexg |
|- ( ( ( f ` p ) e. _V /\ A. y e. ( f ` p ) _pred ( y , A , R ) e. _V ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
22 |
20 21
|
mpan |
|- ( A. y e. ( f ` p ) _pred ( y , A , R ) e. _V -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
23 |
17 19 22
|
3syl |
|- ( ( R _FrSe A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |