Step |
Hyp |
Ref |
Expression |
1 |
|
bnj548.1 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
2 |
|
bnj548.2 |
|- B = U_ y e. ( f ` i ) _pred ( y , A , R ) |
3 |
|
bnj548.3 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
4 |
|
bnj548.4 |
|- G = ( f u. { <. m , C >. } ) |
5 |
|
bnj548.5 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
6 |
5
|
fnfund |
|- ( ( R _FrSe A /\ ta /\ si ) -> Fun G ) |
7 |
6
|
adantr |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> Fun G ) |
8 |
1
|
simp1bi |
|- ( ta -> f Fn m ) |
9 |
|
fndm |
|- ( f Fn m -> dom f = m ) |
10 |
|
eleq2 |
|- ( dom f = m -> ( i e. dom f <-> i e. m ) ) |
11 |
10
|
biimpar |
|- ( ( dom f = m /\ i e. m ) -> i e. dom f ) |
12 |
9 11
|
sylan |
|- ( ( f Fn m /\ i e. m ) -> i e. dom f ) |
13 |
8 12
|
sylan |
|- ( ( ta /\ i e. m ) -> i e. dom f ) |
14 |
13
|
3ad2antl2 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> i e. dom f ) |
15 |
7 14
|
jca |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> ( Fun G /\ i e. dom f ) ) |
16 |
4
|
bnj931 |
|- f C_ G |
17 |
15 16
|
jctil |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> ( f C_ G /\ ( Fun G /\ i e. dom f ) ) ) |
18 |
|
3anan12 |
|- ( ( Fun G /\ f C_ G /\ i e. dom f ) <-> ( f C_ G /\ ( Fun G /\ i e. dom f ) ) ) |
19 |
17 18
|
sylibr |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> ( Fun G /\ f C_ G /\ i e. dom f ) ) |
20 |
|
funssfv |
|- ( ( Fun G /\ f C_ G /\ i e. dom f ) -> ( G ` i ) = ( f ` i ) ) |
21 |
|
iuneq1 |
|- ( ( G ` i ) = ( f ` i ) -> U_ y e. ( G ` i ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
22 |
21
|
eqcomd |
|- ( ( G ` i ) = ( f ` i ) -> U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
23 |
22 2 3
|
3eqtr4g |
|- ( ( G ` i ) = ( f ` i ) -> B = K ) |
24 |
19 20 23
|
3syl |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> B = K ) |