Step |
Hyp |
Ref |
Expression |
1 |
|
bnj553.1 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj553.2 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj553.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj553.4 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
5 |
|
bnj553.5 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
6 |
|
bnj553.6 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
7 |
|
bnj553.7 |
|- C = U_ y e. ( f ` p ) _pred ( y , A , R ) |
8 |
|
bnj553.8 |
|- G = ( f u. { <. m , C >. } ) |
9 |
|
bnj553.9 |
|- B = U_ y e. ( f ` i ) _pred ( y , A , R ) |
10 |
|
bnj553.10 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
11 |
|
bnj553.11 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
12 |
|
bnj553.12 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
13 |
12
|
fnfund |
|- ( ( R _FrSe A /\ ta /\ si ) -> Fun G ) |
14 |
|
opex |
|- <. m , C >. e. _V |
15 |
14
|
snid |
|- <. m , C >. e. { <. m , C >. } |
16 |
|
elun2 |
|- ( <. m , C >. e. { <. m , C >. } -> <. m , C >. e. ( f u. { <. m , C >. } ) ) |
17 |
15 16
|
ax-mp |
|- <. m , C >. e. ( f u. { <. m , C >. } ) |
18 |
17 8
|
eleqtrri |
|- <. m , C >. e. G |
19 |
|
funopfv |
|- ( Fun G -> ( <. m , C >. e. G -> ( G ` m ) = C ) ) |
20 |
13 18 19
|
mpisyl |
|- ( ( R _FrSe A /\ ta /\ si ) -> ( G ` m ) = C ) |
21 |
20
|
3ad2ant1 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> ( G ` m ) = C ) |
22 |
|
fveq2 |
|- ( p = i -> ( G ` p ) = ( G ` i ) ) |
23 |
22
|
bnj1113 |
|- ( p = i -> U_ y e. ( G ` p ) _pred ( y , A , R ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
24 |
23 11 10
|
3eqtr4g |
|- ( p = i -> L = K ) |
25 |
24
|
3ad2ant3 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> L = K ) |
26 |
5 9 10 4 12
|
bnj548 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m ) -> B = K ) |
27 |
26
|
3adant3 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> B = K ) |
28 |
|
fveq2 |
|- ( p = i -> ( f ` p ) = ( f ` i ) ) |
29 |
28
|
bnj1113 |
|- ( p = i -> U_ y e. ( f ` p ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
30 |
9 7
|
eqeq12i |
|- ( B = C <-> U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( f ` p ) _pred ( y , A , R ) ) |
31 |
|
eqcom |
|- ( U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( f ` p ) _pred ( y , A , R ) <-> U_ y e. ( f ` p ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
32 |
30 31
|
bitri |
|- ( B = C <-> U_ y e. ( f ` p ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
33 |
29 32
|
sylibr |
|- ( p = i -> B = C ) |
34 |
33
|
3ad2ant3 |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> B = C ) |
35 |
25 27 34
|
3eqtr2rd |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> C = L ) |
36 |
21 35
|
eqtrd |
|- ( ( ( R _FrSe A /\ ta /\ si ) /\ i e. m /\ p = i ) -> ( G ` m ) = L ) |