Metamath Proof Explorer


Theorem bnj554

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj554.19
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
bnj554.20
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) )
bnj554.21
|- K = U_ y e. ( G ` i ) _pred ( y , A , R )
bnj554.22
|- L = U_ y e. ( G ` p ) _pred ( y , A , R )
bnj554.23
|- K = U_ y e. ( G ` i ) _pred ( y , A , R )
bnj554.24
|- L = U_ y e. ( G ` p ) _pred ( y , A , R )
Assertion bnj554
|- ( ( et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )

Proof

Step Hyp Ref Expression
1 bnj554.19
 |-  ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
2 bnj554.20
 |-  ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) )
3 bnj554.21
 |-  K = U_ y e. ( G ` i ) _pred ( y , A , R )
4 bnj554.22
 |-  L = U_ y e. ( G ` p ) _pred ( y , A , R )
5 bnj554.23
 |-  K = U_ y e. ( G ` i ) _pred ( y , A , R )
6 bnj554.24
 |-  L = U_ y e. ( G ` p ) _pred ( y , A , R )
7 1 bnj1254
 |-  ( et -> m = suc p )
8 2 simp3bi
 |-  ( ze -> m = suc i )
9 simpr
 |-  ( ( m = suc p /\ m = suc i ) -> m = suc i )
10 bnj551
 |-  ( ( m = suc p /\ m = suc i ) -> p = i )
11 fveq2
 |-  ( m = suc i -> ( G ` m ) = ( G ` suc i ) )
12 fveq2
 |-  ( p = i -> ( G ` p ) = ( G ` i ) )
13 iuneq1
 |-  ( ( G ` p ) = ( G ` i ) -> U_ y e. ( G ` p ) _pred ( y , A , R ) = U_ y e. ( G ` i ) _pred ( y , A , R ) )
14 13 6 5 3eqtr4g
 |-  ( ( G ` p ) = ( G ` i ) -> L = K )
15 12 14 syl
 |-  ( p = i -> L = K )
16 11 15 eqeqan12d
 |-  ( ( m = suc i /\ p = i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )
17 9 10 16 syl2anc
 |-  ( ( m = suc p /\ m = suc i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )
18 7 8 17 syl2an
 |-  ( ( et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )