| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj554.19 | 
							 |-  ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj554.20 | 
							 |-  ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj554.21 | 
							 |-  K = U_ y e. ( G ` i ) _pred ( y , A , R )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj554.22 | 
							 |-  L = U_ y e. ( G ` p ) _pred ( y , A , R )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj554.23 | 
							 |-  K = U_ y e. ( G ` i ) _pred ( y , A , R )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj554.24 | 
							 |-  L = U_ y e. ( G ` p ) _pred ( y , A , R )  | 
						
						
							| 7 | 
							
								1
							 | 
							bnj1254 | 
							 |-  ( et -> m = suc p )  | 
						
						
							| 8 | 
							
								2
							 | 
							simp3bi | 
							 |-  ( ze -> m = suc i )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( m = suc p /\ m = suc i ) -> m = suc i )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj551 | 
							 |-  ( ( m = suc p /\ m = suc i ) -> p = i )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = suc i -> ( G ` m ) = ( G ` suc i ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( p = i -> ( G ` p ) = ( G ` i ) )  | 
						
						
							| 13 | 
							
								
							 | 
							iuneq1 | 
							 |-  ( ( G ` p ) = ( G ` i ) -> U_ y e. ( G ` p ) _pred ( y , A , R ) = U_ y e. ( G ` i ) _pred ( y , A , R ) )  | 
						
						
							| 14 | 
							
								13 6 5
							 | 
							3eqtr4g | 
							 |-  ( ( G ` p ) = ( G ` i ) -> L = K )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							 |-  ( p = i -> L = K )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							eqeqan12d | 
							 |-  ( ( m = suc i /\ p = i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )  | 
						
						
							| 17 | 
							
								9 10 16
							 | 
							syl2anc | 
							 |-  ( ( m = suc p /\ m = suc i ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )  | 
						
						
							| 18 | 
							
								7 8 17
							 | 
							syl2an | 
							 |-  ( ( et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) )  |