Step |
Hyp |
Ref |
Expression |
1 |
|
bnj558.3 |
|- D = ( _om \ { (/) } ) |
2 |
|
bnj558.16 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
3 |
|
bnj558.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
4 |
|
bnj558.18 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
5 |
|
bnj558.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
6 |
|
bnj558.20 |
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) ) |
7 |
|
bnj558.21 |
|- B = U_ y e. ( f ` i ) _pred ( y , A , R ) |
8 |
|
bnj558.22 |
|- C = U_ y e. ( f ` p ) _pred ( y , A , R ) |
9 |
|
bnj558.23 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
10 |
|
bnj558.24 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
11 |
|
bnj558.25 |
|- G = ( f u. { <. m , C >. } ) |
12 |
|
bnj558.28 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
13 |
|
bnj558.29 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
14 |
|
bnj558.36 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
bnj557 |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) -> ( G ` m ) = L ) |
16 |
|
bnj422 |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) <-> ( et /\ ze /\ R _FrSe A /\ ta ) ) |
17 |
|
bnj253 |
|- ( ( et /\ ze /\ R _FrSe A /\ ta ) <-> ( ( et /\ ze ) /\ R _FrSe A /\ ta ) ) |
18 |
16 17
|
bitri |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) <-> ( ( et /\ ze ) /\ R _FrSe A /\ ta ) ) |
19 |
18
|
simp1bi |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) -> ( et /\ ze ) ) |
20 |
5 6 9 10 9 10
|
bnj554 |
|- ( ( et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) ) |
21 |
19 20
|
syl |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) -> ( ( G ` m ) = L <-> ( G ` suc i ) = K ) ) |
22 |
15 21
|
mpbid |
|- ( ( R _FrSe A /\ ta /\ et /\ ze ) -> ( G ` suc i ) = K ) |