Step |
Hyp |
Ref |
Expression |
1 |
|
bnj570.3 |
|- D = ( _om \ { (/) } ) |
2 |
|
bnj570.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
3 |
|
bnj570.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
4 |
|
bnj570.21 |
|- ( rh <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) ) |
5 |
|
bnj570.24 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
6 |
|
bnj570.26 |
|- G = ( f u. { <. m , C >. } ) |
7 |
|
bnj570.40 |
|- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |
8 |
|
bnj570.30 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
9 |
|
bnj251 |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) <-> ( R _FrSe A /\ ( ta /\ ( et /\ rh ) ) ) ) |
10 |
2
|
simp3bi |
|- ( ta -> ps' ) |
11 |
4
|
simp1bi |
|- ( rh -> i e. _om ) |
12 |
11
|
adantl |
|- ( ( et /\ rh ) -> i e. _om ) |
13 |
3 4
|
bnj563 |
|- ( ( et /\ rh ) -> suc i e. m ) |
14 |
12 13
|
jca |
|- ( ( et /\ rh ) -> ( i e. _om /\ suc i e. m ) ) |
15 |
8
|
bnj946 |
|- ( ps' <-> A. i ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
16 |
|
sp |
|- ( A. i ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) -> ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
17 |
15 16
|
sylbi |
|- ( ps' -> ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
18 |
17
|
imp32 |
|- ( ( ps' /\ ( i e. _om /\ suc i e. m ) ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
19 |
10 14 18
|
syl2an |
|- ( ( ta /\ ( et /\ rh ) ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
20 |
9 19
|
simplbiim |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
21 |
7
|
fnfund |
|- ( ( R _FrSe A /\ ta /\ et ) -> Fun G ) |
22 |
21
|
bnj721 |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> Fun G ) |
23 |
6
|
bnj931 |
|- f C_ G |
24 |
23
|
a1i |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> f C_ G ) |
25 |
|
bnj667 |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( ta /\ et /\ rh ) ) |
26 |
2
|
bnj564 |
|- ( ta -> dom f = m ) |
27 |
|
eleq2 |
|- ( dom f = m -> ( suc i e. dom f <-> suc i e. m ) ) |
28 |
27
|
biimpar |
|- ( ( dom f = m /\ suc i e. m ) -> suc i e. dom f ) |
29 |
26 13 28
|
syl2an |
|- ( ( ta /\ ( et /\ rh ) ) -> suc i e. dom f ) |
30 |
29
|
3impb |
|- ( ( ta /\ et /\ rh ) -> suc i e. dom f ) |
31 |
25 30
|
syl |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> suc i e. dom f ) |
32 |
22 24 31
|
bnj1502 |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( G ` suc i ) = ( f ` suc i ) ) |
33 |
2
|
simp1bi |
|- ( ta -> f Fn m ) |
34 |
|
bnj252 |
|- ( ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) <-> ( m e. D /\ ( n = suc m /\ p e. _om /\ m = suc p ) ) ) |
35 |
34
|
simplbi |
|- ( ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) -> m e. D ) |
36 |
3 35
|
sylbi |
|- ( et -> m e. D ) |
37 |
|
eldifi |
|- ( m e. ( _om \ { (/) } ) -> m e. _om ) |
38 |
37 1
|
eleq2s |
|- ( m e. D -> m e. _om ) |
39 |
|
nnord |
|- ( m e. _om -> Ord m ) |
40 |
36 38 39
|
3syl |
|- ( et -> Ord m ) |
41 |
40
|
adantr |
|- ( ( et /\ rh ) -> Ord m ) |
42 |
41 13
|
jca |
|- ( ( et /\ rh ) -> ( Ord m /\ suc i e. m ) ) |
43 |
33 42
|
anim12i |
|- ( ( ta /\ ( et /\ rh ) ) -> ( f Fn m /\ ( Ord m /\ suc i e. m ) ) ) |
44 |
|
fndm |
|- ( f Fn m -> dom f = m ) |
45 |
|
elelsuc |
|- ( suc i e. m -> suc i e. suc m ) |
46 |
|
ordsucelsuc |
|- ( Ord m -> ( i e. m <-> suc i e. suc m ) ) |
47 |
46
|
biimpar |
|- ( ( Ord m /\ suc i e. suc m ) -> i e. m ) |
48 |
45 47
|
sylan2 |
|- ( ( Ord m /\ suc i e. m ) -> i e. m ) |
49 |
44 48
|
anim12i |
|- ( ( f Fn m /\ ( Ord m /\ suc i e. m ) ) -> ( dom f = m /\ i e. m ) ) |
50 |
|
eleq2 |
|- ( dom f = m -> ( i e. dom f <-> i e. m ) ) |
51 |
50
|
biimpar |
|- ( ( dom f = m /\ i e. m ) -> i e. dom f ) |
52 |
43 49 51
|
3syl |
|- ( ( ta /\ ( et /\ rh ) ) -> i e. dom f ) |
53 |
52
|
3impb |
|- ( ( ta /\ et /\ rh ) -> i e. dom f ) |
54 |
25 53
|
syl |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> i e. dom f ) |
55 |
22 24 54
|
bnj1502 |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( G ` i ) = ( f ` i ) ) |
56 |
55
|
iuneq1d |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> U_ y e. ( G ` i ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
57 |
20 32 56
|
3eqtr4d |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
58 |
57 5
|
eqtr4di |
|- ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( G ` suc i ) = K ) |