Step |
Hyp |
Ref |
Expression |
1 |
|
bnj579.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj579.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj579.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
biid |
|- ( ( f Fn n /\ ph /\ ps ) <-> ( f Fn n /\ ph /\ ps ) ) |
5 |
|
biid |
|- ( [. g / f ]. ph <-> [. g / f ]. ph ) |
6 |
|
biid |
|- ( [. g / f ]. ps <-> [. g / f ]. ps ) |
7 |
|
biid |
|- ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> [. g / f ]. ( f Fn n /\ ph /\ ps ) ) |
8 |
|
biid |
|- ( ( ( n e. D /\ ( f Fn n /\ ph /\ ps ) /\ [. g / f ]. ( f Fn n /\ ph /\ ps ) ) -> ( f ` j ) = ( g ` j ) ) <-> ( ( n e. D /\ ( f Fn n /\ ph /\ ps ) /\ [. g / f ]. ( f Fn n /\ ph /\ ps ) ) -> ( f ` j ) = ( g ` j ) ) ) |
9 |
|
biid |
|- ( A. k e. n ( k _E j -> [. k / j ]. ( ( n e. D /\ ( f Fn n /\ ph /\ ps ) /\ [. g / f ]. ( f Fn n /\ ph /\ ps ) ) -> ( f ` j ) = ( g ` j ) ) ) <-> A. k e. n ( k _E j -> [. k / j ]. ( ( n e. D /\ ( f Fn n /\ ph /\ ps ) /\ [. g / f ]. ( f Fn n /\ ph /\ ps ) ) -> ( f ` j ) = ( g ` j ) ) ) ) |
10 |
1 2 4 5 6 7 3 8 9
|
bnj580 |
|- ( n e. D -> E* f ( f Fn n /\ ph /\ ps ) ) |