| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj581.3 | 
							 |-  ( ch <-> ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj581.4 | 
							 |-  ( ph' <-> [. g / f ]. ph )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj581.5 | 
							 |-  ( ps' <-> [. g / f ]. ps )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj581.6 | 
							 |-  ( ch' <-> [. g / f ]. ch )  | 
						
						
							| 5 | 
							
								1
							 | 
							sbcbii | 
							 |-  ( [. g / f ]. ch <-> [. g / f ]. ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sbc3an | 
							 |-  ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj62 | 
							 |-  ( [. g / f ]. f Fn n <-> g Fn n )  | 
						
						
							| 8 | 
							
								7
							 | 
							bicomi | 
							 |-  ( g Fn n <-> [. g / f ]. f Fn n )  | 
						
						
							| 9 | 
							
								8 2 3
							 | 
							3anbi123i | 
							 |-  ( ( g Fn n /\ ph' /\ ps' ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							bitr4i | 
							 |-  ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( g Fn n /\ ph' /\ ps' ) )  | 
						
						
							| 11 | 
							
								4 5 10
							 | 
							3bitri | 
							 |-  ( ch' <-> ( g Fn n /\ ph' /\ ps' ) )  |