Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj589.1 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
Assertion | bnj589 | |- ( ps <-> A. k e. _om ( suc k e. n -> ( f ` suc k ) = U_ y e. ( f ` k ) _pred ( y , A , R ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj589.1 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
2 | 1 | bnj222 | |- ( ps <-> A. k e. _om ( suc k e. n -> ( f ` suc k ) = U_ y e. ( f ` k ) _pred ( y , A , R ) ) ) |