Metamath Proof Explorer


Theorem bnj591

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj591.1
|- ( th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) )
Assertion bnj591
|- ( [. k / j ]. th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) )

Proof

Step Hyp Ref Expression
1 bnj591.1
 |-  ( th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) )
2 1 sbcbii
 |-  ( [. k / j ]. th <-> [. k / j ]. ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) )
3 vex
 |-  k e. _V
4 fveq2
 |-  ( j = k -> ( f ` j ) = ( f ` k ) )
5 fveq2
 |-  ( j = k -> ( g ` j ) = ( g ` k ) )
6 4 5 eqeq12d
 |-  ( j = k -> ( ( f ` j ) = ( g ` j ) <-> ( f ` k ) = ( g ` k ) ) )
7 6 imbi2d
 |-  ( j = k -> ( ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) ) )
8 3 7 sbcie
 |-  ( [. k / j ]. ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) )
9 2 8 bitri
 |-  ( [. k / j ]. th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) )